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a b s t r a c t

We analyze optimized explicit Runge–Kutta schemes (RK) for computational aeroacoustics,
and wave propagation phenomena in general. Exploiting the analysis developed in [S. Pir-
ozzoli, Performance analysis and optimization of finite-difference schemes for wave prop-
agation problems, J. Comput. Phys. 222 (2007) 809–831], we rigorously evaluate the
performance of several time integration schemes in terms of appropriate error and cost
metrics, and provide a general strategy to design Runge–Kutta methods tailored for specific
applications. We present families of optimized second- and third-order Runge–Kutta
schemes with up to seven stages, and describe their implementation in the framework
of Williamson’s 2N-storage formulation [J.H. Williamson, Low-storage Runge–Kutta
schemes, J. Comput. Phys. 35 (1980) 48–56]. Numerical simulations of the 1D linear advec-
tion equation and of the 2D linearized Euler equations are performed to demonstrate the
validity of the theory and to quantify the improvement provided by optimized schemes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the past decades intense efforts in computational aeroacoustics (CAA) have been devoted to develop schemes with
minimal numerical dissipation and dispersion. Ideal CAA schemes should be able to propagate over long distances and for
long times acoustic disturbances with a broad range of length and time scales. High order schemes for CAA are generally
based on a method-of-lines approach, whereby spatial and time discretization are handled sequentially. Most of the efforts
have been directed on trying to improve the discretization of the space derivative operators. For this purpose Lele [3] pro-
posed central compact schemes, which guarantee resolution properties in wavenumber space similar to spectral ones. Cen-
tral approximations of the spatial derivatives have null dissipation error, and this is the reason for their superiority in CAA
with respect to upwind schemes. The basic idea of compact schemes is to improve the resolution properties of derivative
approximations by minimizing the difference between the exact and the discrete dispersion relation. A wide variety of ‘‘opti-
mized” schemes for spatial discretization are available in the literature [3–6], with varying degree of success, but mostly
based on the attempt to give up maximum formal order of accuracy in the representation of the derivatives while improving
the behavior in wavenumber space.

The issue of time integration of the semi-discretized set of ordinary differential equations (ODE) associated with a given
spatial discretization has received comparatively less attention. Time integration in CAA applications is usually performed by
means of classical, explicit third- or fourth-order Runge–Kutta algorithms [7], because of their simplicity of implementation
and relatively large stability limits. Given a general non-autonomous system of ODEs stemming from the semi-discretization
of a conservation law, symbolically written as
. All rights reserved.
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dU
dt
¼ FðUðtÞ; tÞ; ð1Þ
where U is the vector of point unknowns at time t, the general form of an explicit s-stage, two-level RK scheme to advance
from time tn to tn þ k is
Unþ1 ¼ Un þ k
Xs

i¼1

biKi; ð2aÞ

Ki ¼ F Un þ k
Xi�1

j¼1

aijKj; tn þ kci

 !
; i ¼ 1; . . . ; s; ð2bÞ
with
ci ¼
Xi�1

j¼1

aij: ð3Þ
The coefficients aij and bi can be determined in such a way as to achieve a given formal order of accuracy and/or to improve
the computational efficiency. For example, to derive RK schemes with up to third-order of accuracy, the following conditions
[7] must be satisfied
ðO1Þ :
Xs

i¼1

bi ¼ 1; ð4aÞ

ðO2Þ :
Xs

i¼1

bici ¼
1
2
; ð4bÞ

ðO3Þ :
Xs

i¼1

biaijcj ¼
1
6
; ð4cÞ

ðO4Þ :
Xs

i¼1

bic2
i ¼

1
3
; ð4dÞ
where (On) indicates formulas controlling nth-order of accuracy.
A few attempts have been made to improve the performance of RK schemes, with the broad idea of minimizing the in-

curred dispersion and dissipation error. Hu et al. [8] introduced a class of Low-Dissipation and Dispersion Runge–Kutta
(LDDRK) schemes by minimizing (a suitable norm of) the difference between the amplification factor of the RK scheme
and the ‘‘true” amplification factor. Those authors considered (linearly) second-order accurate schemes with four and five
stages and fourth-order accurate ones with six stages, and 3N-storage implementation (i.e. requiring memory allocation pro-
portional to three times the number of ODEs to be solved). For nonlinear problems the accuracy of the schemes proposed by
Hu et al. drops to second-order.

Low-storage implementation is an important issue in CAA because of the extensive computational resources required by
wave propagation problems in large domains. Kennedy et al. [9] have derived low-storage, explicit Runge–Kutta schemes,
that use from two to five registers of memory, and having accuracy from third- to fifth-order. Those authors optimized
schemes across a broad range of properties, such as linear and nonlinear stability, accuracy efficiency, error control reliabil-
ity, dissipation and dispersion errors.

Stanescu and Habashi [10] devised 2N-storage implementations of many RK schemes, which maintain the formal order of
accuracy also for nonlinear operators, by exploiting Williamson’s [2] formulation, and enforcing constraints deriving from
order of accuracy, storage and resolution requirements. In particular, they provided a low-storage implementation of LDDRK
schemes developed by Hu et al. [8].

An alternative low-storage implementation was introduced by Calvo et al. [11], who proposed optimized third- and
fourth-order, five-stage schemes. Their optimization strategy is based on first maximizing the stability range of the algo-
rithm, and then trying to improve the range of well-resolved Courant numbers. The same authors [12] also proposed a var-
iant of the method whereby the coefficients of the scheme were determined so as to maximize the sum of the stability and
the accuracy range.

Bogey and Bailly [13] developed optimized second-order, five- and six-stage RK schemes based on minimizing the sum of
the norms of the dissipation and dispersion errors in a given range of frequencies. Their strategy was also used by Berland
et al. [14] to derive an optimized fourth-order accurate (in nonlinear sense) low-storage RK algorithm with a wide stability
range.

Ramboer et al. [15] brought spatial discretization into the analysis, and attempted to minimize the total dissipation and
dispersion errors deriving from coupling with time integration. The formulation of Ramboer et al. has the main advantage of
being applicable also to upwind type schemes, as opposed to conventional strategies based on the assumption of central spa-
tial discretizations.
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In this paper we present a novel procedure to ‘‘optimize” (in a sense that will be clarified) the performance of Runge–Kut-
ta time integration schemes for specific applications dominated by linear, wave-like propagation of disturbances with a
broad spectrum of wavenumbers. The optimization procedure is based on the analysis developed in Ref. [1] to assess the
performance of finite-difference schemes for CAA.

The paper is organized as follows: In Section 2 we present the key ingredients to set up the problem of performance opti-
mization. In Section 3 we introduce families of optimized, multi-stage RK schemes tailored for specific problems (hereafter
referred to as ORK), and illustrate their implementation in a low-storage framework. In Section 4 we test the validity of the
proposed strategy for a number of applications, including the linear advection equation and the linearized Euler equations.

2. Performance analysis of numerical schemes

In the present section we recall some of the results reported in Ref. [1], to highlight the key findings that can be exploited
to develop optimized Runge–Kutta schemes. The model problem is the linear propagation (at constant phase speed a) of
sinusoidal disturbances with wavelength k (and wavenumber w ¼ 2p=k) in a one-dimensional unbounded domain
@u
@t
þ a

@u
@x
¼ 0; uðx; 0Þ ¼ û0eiwx; ð5Þ
uniformly discretized both in space (with grid spacing h) and time (with time step k). Ref. [1] assumed s-stage Runge–Kutta
time integration and (either explicit or implicit) finite-difference discretization of the spatial derivatives of the type (denoted
in the following as CPp)
v 0j þ
XP

L¼1

aLðv 0jþL þ v 0j�LÞ ¼
1
h

Xp

‘¼1

a‘ðv jþ‘ � v j�‘Þ; ð6Þ
where v j is the approximate solution of Eq. (5) at node j.
Let E be the relative L2 error norm of the computed solution at time T ¼ nk, and let C be the computational cost, defined as
E ¼ jvð�; TÞ � uð�; TÞj2
ju0ð�Þj2

¼
1
k

R x0þk
x0
jvðx; TÞ � uðx; TÞj2 dx

� �1=2

1
k

R x0þk
x0
ju0ðxÞj2 dx

� �1=2 ; ð7Þ

C ¼ sNopTL
1

kh
; ð8Þ
where C is assumed to be proportional to the total number of points in the computational domain ðL=hÞ, the number of oper-
ations/node required by Eq. (6) (say Nop), the number of Runge–Kutta stages ðsÞ and the number of time steps ðT=kÞ. One can
arrive, with a few approximations, to the following expressions for normalized cost and error metrics
eðu;rÞ � E
ðawTÞ ¼

jgðu;rÞ � e�iruj
r u

; ð9Þ

cðu;rÞ � C
ðawTÞ � ðwLÞ ¼ sNop

1
ru2 ; ð10Þ
where u ¼ wh is the reduced wavenumber, r ¼ ak=h is the Courant number, ðawTÞ is a measure of the number of wave-
lengths traveled by the wave in a time interval T; ðwLÞ is a measure of the number of wavelengths contained in the compu-
tational domain, and
gðu;rÞ ¼
Xs

m¼0

cmð�irUðuÞÞm; ð11Þ
is the amplification factor of the difference scheme [16]. The spatial discretization enters the analysis through the modified
wavenumber UðuÞ [3], defined as
UðuÞ ¼
Pp

‘¼1a‘ sinð‘uÞ
1=2þ

PP
L¼1aL cosðLuÞ

; ð12Þ
and time integration through the coefficients cm, which are related to the coefficients aij and bi of the underlying Runge–Kut-
ta algorithm (Eq. (2)). Indeed, in the case of a system of linear ODEs, i.e. assuming FðUÞ ¼ kU, one has [10]
c0 ¼ 1;
c1 ¼

P
i

bi;

c2 ¼
P

i
bici;

cm ¼
P

i;j;k;...;q;r
bi aijajk . . . aqr|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m�2 times

cr ; m ¼ 3; . . . ; s:

8>>>>>>>><
>>>>>>>>:

ð13Þ
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Linearly rth-order RK accurate schemes (i.e. rth-order accurate for linear ODEs) are obtained by setting
Fig. 1.
discreti
cm ¼
1

m!
; m ¼ 0; . . . ; r; ð14Þ
for which (11) is a rth-order Taylor series expansion of the ‘‘exact” amplification factor [7].
When dealing with multidimensional nonlinear propagation problems of broadband signals, the primary effect is to have

a whole range of spatial scales, say jwj 6 �w, and propagation velocities, say jaj 6 �a (which imply �u ¼ �wh and �r ¼ �ak=h), and a
different weight of u in the cost metric (the number of points scaling as hd, where d is the number of space dimensions). The
formulas for the normalized cost and error can then be arranged as
�cdð �u; �rÞ ¼ sNop
1

�r�udþ1 ; ð15Þ

�eð �u; �rÞ ¼ 1
�r �u
� max
ðu;rÞ2½0;�u��½0;�r�

jgðu;rÞ � e�iruj: ð16Þ
The changes with respect to the single-scale, one-dimensional case are: (i) replacement of the ‘‘local” normalized error func-
tion e in Eq. (9) with the ‘‘global” error �e, representing the maximum of e in the entire range of relevant wavenumbers and
Courant numbers; and (ii) replacement of u2 in Eq. (10) with �udþ1 in the cost metric.

Optimizing the performance of a given scheme (i.e. for given values of s;Nop) for a given problem amounts to requiring that
the computational cost be minimum for a given error level; this can be achieved by specifying a target level (say e) for the
relative error, and finding a pair of values �u�ðeÞ; �r�ðeÞ that minimize the cost metric. To clearly illustrate the optimization pro-
cedure in Fig. 1 we report the iso-lines of the normalized global error �e and the two-dimensional cost �c2 in the ð �u; �rÞ plane for
the C23 spatial discretization (corresponding to a1 ¼ 334=899; a2 ¼ 43=1798; a1 ¼ 1065=1798; a2 ¼ 1038=899; a3 ¼
79=1798), coupled with the classical fourth-order Runge–Kutta time discretization (RK4, corresponding to c0 ¼ 1,
c1 ¼ 1; c2 ¼ 1=2; c3 ¼ 1=6; c4 ¼ 1=24).

The determination of the optimal working points of a fully discretized scheme proceeds by looking for the conditions of
least cost for given allowable error (or the opposite). Geometrically, this amounts to finding the right-most iso-cost curve
intersecting a given iso-error curve, which implies tangency of the two families of curves at the optimal points. Note that,
by virtue of its definition (see Eq. (15)) the normalized cost function is concave, and the normalized error function (see
Eq. (16)) is (almost always) convex with respect to the �u; �r axes. In addition, since the iso-cost lines are steeper than the
iso-error lines at large r, it follows that, for any iso-error curve there is a unique point in which a curve of the iso-cost family
is tangent to it. One (sample) optimal working point is indicated with a bullet in Fig. 1.

Ref. [1] also showed that the global error can be expressed with good approximation as
�eð �u; �rÞ �maxð�esð�uÞ; �etð�r �uÞÞ; ð17Þ
where �es is the spatial error (i.e. the error in the case of exact time integration),
�esð�u; a‘;aLÞ ¼
1
�u

max
06u6�u

jUðuÞ �uj; ð18Þ
and �et is the temporal error (i.e. the error in the case of exact space integration),
�etð�z; cmÞ ¼
1
�z

max
06z6�z

Xs

m¼0

cmð�izÞm � e�iz

�����
�����; ð19Þ
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with z ¼ ru;�z ¼ �r�u. The condition of tangency of the iso-error and iso-cost curves for a normalized error level e under the
approximation (17) is clearly realized when
Fig. 2.
RK4 tim
�r ¼ rm
�esð�uÞ ¼ �etð�zÞ ¼ e: ð20Þ
The validity of the approximate optimality condition (20) is checked in Fig. 2, where the error map reported in Fig. 1 is shown
together with the corresponding approximation (17). The figure confirms that the ‘‘true” optimal points lie close to the points
where Eq. (20) is satisfied.

The condition (20) can be used to determine the approximate optimal working conditions of a given scheme for a given
problem, by separately considering the contributions of space- and time discretization, as follows:

(i) determine the optimal reduced wavenumber according to
�u�ðeÞ ¼ �e�1
s ðeÞ; ð21Þ
(ii) determine the optimal Courant number from
�r�ðeÞ ¼ �z�ðeÞ= �u�ðeÞ; �z�ðeÞ � �e�1
t ðeÞ: ð22Þ
The normalized cost corresponding to the optimal working conditions is (see Eq. (15))
�c�dðeÞ ¼ sNop
1

�z�ðeÞ �u�dðeÞ : ð23Þ
Eq. (23) suggests that the approximate analysis can also be exploited to develop new schemes. Indeed, optimized finite-dif-
ference schemes for a specified target error level e can be designed trying to maximize �u�ðeÞ and �z�ðeÞ in Eq. (23), which
amounts to separately optimize the spatial and time discretization schemes for the same error level.

3. Optimization of RK schemes

Our aim is improving the performance of explicit time integration schemes of Runge–Kutta type. For this purpose it is
useful to split the overall algorithmic cost (as defined in Eq. (15)) as the product of the costs associated with the space-
and the time- discretization, i.e.
�cdð �u;�zÞ ¼ �ctð�zÞ � �csd
ð�uÞ; ð24Þ
where �ctð�zÞ and �csd
ð �uÞ are, respectively, the costs associated with time and space discretization
�ctð�zÞ ¼
s
�z
; �csd

ð �uÞ ¼ Nop

�ud
: ð25Þ
In particular, under the conditions of optimal performance (where Eq. (23) holds)
�c�t ðeÞ ¼
s

�z�ðeÞ ;
�c�sd
ðeÞ ¼ Nop

½ �u�ðeÞ�d
: ð26Þ
It is therefore apparent that time-optimized schemes (for a given target error e) can be obtained by maximizing �z�ðeÞ, which
can be interpreted as a ‘‘temporal resolving efficiency” (in analogy with the spatial resolving efficiency, defined in Ref. [3]).
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Assuming for the moment exact spatial discretization, this requirement can be formally cast as
Table 1
Coeffici

Scheme

ORK24-
ORK24-
ORK24-
ORK24-
ORK25-
ORK25-
ORK25-
ORK25-
ORK26-
ORK26-
ORK26-
ORK26-
ORK37-
ORK37-
ORK37-
ORK37-
�z�optðeÞ �maxf�z : �etð�z; cmÞ 6 eg; ð27Þ
under the stability constraint of the RK algorithm
f�z�optðeÞ 6 �zs; ð28Þ
where �zs is the stability limit
�zs �maxf�z : jgtð�z; cmÞj 6 1g; ð29Þ
being
gtð�z; cmÞ ¼
Xs

m¼0

cmð�i�zÞm; ð30Þ
the amplification factor in the case of null spatial error (corresponding to Eq. (11) for U � u). The factor f is introduced in Eq.
(28) to guarantee an extra stability margin beyond the range of well resolved z’s, which is important to exploit the advan-
tages of improved time integration for practical purposes. In the present paper, f ¼ 1:4 is used, as it provides a good balance
of performance and stability margin.

A numerical optimization procedure has been carried out to determine the coefficients cm that maximize Eq. (27) under
the constraint (28), based on standard ordered search in the parameter space in a sufficiently large neighborhood of the base-
line values 1=m!. RK schemes with different number of stages ðs ¼ 4; . . . ;7Þ, and different target errors e ¼ 10�nðn ¼ 3; . . . ;6Þ
have been considered. Linear second-order formal accuracy has been imposed for four-, five- and six-stage schemes, while
third-order accuracy has been imposed for seven-stage schemes. The optimized schemes thus obtained will be denoted in
the following as ORKrs-n. The set of coefficients cm determined from numerical optimization is reported in Table 1, together
with the related stability margin and the optimal resolving efficiency, and in Fig. 3 we report the associated stability foot-
prints (i.e. the locus of points in the complex �z plane where jgt j ¼ 1). Note that, to emphasize deviations from standard RK, in
Table 1 we actually report 1=m!� cm.

The nominal performance of the ORK schemes is presented in Fig. 4 in terms of their temporal cost-error relations. The
design working points of all schemes, i.e. the points where �z ¼ �z�optðeÞ (and �ct ¼ s=�z�opt), are indicated in the same figure with
symbols. For comparison, in Fig. 4 we also report the curves associated with non-optimized (i.e. with maximum formal accu-
racy) RK schemes (hereafter denoted as RKs). Note that the maps corresponding to RK5 and RK6 are not reported, since the
underlying schemes are unconditionally unstable. The figure confirms that schemes designed for a specific level of the rel-
ative error attain the least cost (among all schemes with the same number of stages) in the vicinity of the target error. The
same reasoning can also be cast in terms of cost: ORK schemes deliver the least error near their design cost level (among all
schemes of the family). The advantages offered by optimized schemes with respect to their non-optimized counterpart are
particularly apparent when higher accuracy is required. For instance, for an error level e ¼ 10�6, ORK24-6 and ORK37-6 offer
a nominal reduction of the computational cost of about 35% respect to RK4 and RK7, whereas for a nominal error e ¼ 10�3,
ORK24-3 and ORK37-3 provide cost reduction of about 20%.

In order to compare ORK schemes with the RK schemes developed by previous authors, in the following we will consider:
(i ) the second-order, five-stage scheme proposed by Hu et al. [8] (denoted as RK25-H); (ii) the third-order, five stage scheme
ents of time-optimized schemes for various target errors (for all schemes c0 ¼ 1; c1 ¼ 1; c2 ¼ 1=2).

1=3!� c3 1=4!� c4 1=5!� c5 1=6!� c6 1=7!� c7 �zs �z�opt

6 1:808 � 10�4 1:808 � 10�4 – – – 2.83 0.16
5 5:600 � 10�4 5:600 � 10�4 – – – 2.83 0.27
4 1:392 � 10�3 1:392 � 10�3 – – – 2.83 0.44
3 3:037 � 10�3 3:037 � 10�3 – – – 2.82 0.71
6 6:990 � 10�5 9:065 � 10�5 1:265 � 10�3 – – 3.47 0.26
5 2:000 � 10�4 2:944 � 10�4 1:152 � 10�3 – – 3.47 0.48
4 4:933 � 10�4 8:759 � 10�4 1:006 � 10�3 – – 3.49 0.85
3 1:098 � 10�3 2:319 � 10�3 9:983 � 10�4 – – 3.55 1.42
6 4:670 � 10�5 4:924 � 10�5 5:685 � 10�4 5:648 � 10�4 – 3.89 0.32
5 1:376 � 10�4 1:426 � 10�4 5:465 � 10�4 4:608 � 10�4 – 3.86 0.59
4 4:230 � 10�4 4:229 � 10�4 6:732 � 10�4 4:441 � 10�4 – 3.89 1.07
3 1:102 � 10�3 1:102 � 10�3 9:928 � 10�4 4:280 � 10�4 – 3.96 1.93
6 0 1:540 � 10�5 �1:159 � 10�6 3:920 � 10�5 �4:480 � 10�7 1.92 0.85
5 0 6:229 � 10�5 �1:363 � 10�5 8:472 � 10�5 �1:012 � 10�5 2.33 1.09
4 0 2:205 � 10�4 �2:070 � 10�5 1:510 � 10�4 �4:390 � 10�6 2.53 1.56
3 0 8:964 � 10�4 8:939 � 10�5 3:232 � 10�4 3:197 � 10�5 3.29 2.27
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of Calvo et al. [11] (RK35-C); (iii) the second-order, five- and six-stage schemes proposed by Berland et al. [14] (RK25-B,
RK26-B). The coefficients of those schemes are reported in Table 2, together with the related stability margin, and their nom-
inal performance is analyzed in Fig. 5, in terms of the corresponding temporal cost-error relation. To clarify the advantages
offered by the present ORK schemes, in the figure we also report the set of optimal working points associated with the pres-
ent schemes (already shown in Fig. 4), and the envelope lines that represent, in a sense, the limit for the performance of ORK
schemes with given number of stages and given formal order of accuracy. It is interesting to note that some of the schemes
developed in the literature very nearly belong to the family of optimized schemes here discussed, even though they were
devised following very different strategies. For instance, the RK25-H and RK25-B schemes have similar performance to
ORK25-3, delivering optimal performance for �et � 10�3, and the RK26-B scheme attains optimal performance for
�et � 2:3E� 4. However, we observe that all schemes are largely inefficient if made to work away from their design condi-
tions. While, for instance, the RK25-H and RK25-B schemes behave quite well for �ct � 3	 5, they are not suitable for oper-
ating at larger cost values (or at smaller errors), where specifically designed schemes should be used. Looking through the
existing literature, it appears that this fact has been largely disregarded, and RK schemes are very often used well away from
their optimal performance point. From inspection of Fig. 5, we also observe that the efficiency steadily increases with the
number of stages, and extremely efficient schemes are found for s ¼ 7.
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3.1. Coupling with finite accuracy spatial discretization

So far, time integration schemes have been evaluated assuming exact spatial discretization. However, the actual benefits
of ORK schemes can only be assessed by including spatial discretization in the analysis. For the sake of the analysis we con-
sider a central spatial discretization of the type (6) with P ¼ 2; p ¼ 3, which provides 10th-order accurate approximation of
the spatial derivatives. The resolution properties of the C23 spatial discretization are shown in Fig. 6 in terms of modified
wavenumber UðuÞ and spatial cost-error ð�csd

� �esÞ relation.
We recall that optimal working points for a fully discretized scheme approximately correspond to the equality of the spa-

tial and temporal errors, as stated in Eq. (20). Therefore, from the �ct � �et relation corresponding to a given RK scheme, and
from the �csd

� �es curve associated to a given spatial discretization (C23 in this case) the overall cost-error relation �c�d � e can
be determined, from Eqs. (21)–(23). For instance, assuming e ¼ 10�4 and ORK25-4 time integration, Fig. 4 yields �ct � 5:88,
and Fig. 6(b) yields �cs1 � 11:84, giving an overall optimal cost �c�1 ¼ �ct�cs1 � 69:62. The optimal cost-error, cost-Courant



100 101 102
10-7

10-6

10-5

10-4

10-3

10-2

10-1

RK25-B
RK25-H
RK35-C
RK26-B
ORK (s=4)
ORK (s=5)
ORK (s=6)
ORK (s=7)

ct

e t

Fig. 5. Theoretical temporal cost-error relation for schemes developed by previous authors. Symbols denote optimal working points for the present family
of ORK schemes.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

ϕ

Φ
(ϕ

)

a b

100 101 102
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

d = 1
d = 2

csd

e s

Fig. 6. C23 spatial discretization: modified wavenumber (a) and theoretical cost-error relation (b). Chained line in (a) indicates exact differentiation.

4190 M. Bernardini, S. Pirozzoli / Journal of Computational Physics 228 (2009) 4182–4199
number and cost-reduced wavenumber maps are reported in Fig. 7 for standard and ORK schemes coupled with the C23 spa-
tial discretization. The results obtained with different types of spatial discretization (not shown) follow the same qualitative
behavior.

To correctly interpret the maps reported in Fig. 7 we observe that for any full discretization, a minimum value of cost
exists for which it can be used under optimal conditions. Such value is dictated by the limit allowed by the CFL stability
condition
rmax ¼
�zs

max
u2ð0;pÞ

UðuÞ : ð31Þ
As a consequence, all maps in the figure are terminated at their leftmost cost level. The figure proves that (for any assigned
spatial discretization) the use of multi-stage time discretization may provide improved efficiency. The figure also confirms
that ORK schemes provide lower cost around their design error level, and allow working at lower values of cost compared to
their non-optimized counterparts.

Fig. 7 provides useful guidance for the numerical computation of wave propagation problems. Indeed, given a fully dis-
cretized numerical scheme, for prescribed allowable error or affordable cost, the figure provides the set of �u�; �r� to achieve
optimal performance. From the optimal set ð�u�; �r�Þ, one can directly derive the mesh spacing and the time step to perform
the simulation. The figure also allows the choice of the ‘‘best” scheme for specific computational requirements. Similar maps
to Fig. 7 can be determined for any fully discretized scheme in any number of space dimensions.
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3.2. Low-storage implementation

Low-storage implementation of Runge–Kutta schemes is extremely important in computational aeroacoustics and direct
numerical simulation of fluid turbulence, because of the extensive memory requirements. In this paper a 2N-storage RK
implementation is considered [2,10]
Wi ¼ aiWi�1 þ kFðUi�1; tiÞ
Ui ¼ Ui�1 þ biWi

; i ¼ 1; . . . ; s; ð32Þ
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where U0 ¼ Un; W0 ¼ 0; Us ¼ Unþ1; ti ¼ tn þ cik, and the coefficients ai; bi are related to the coefficients aij and bi in Eq. (2)
through
bs ¼ bs;

bs�‘ ¼ bs�‘ þ as�‘þ1bs�‘þ1; ‘ ¼ 1; . . . ; s� 1;

�
ð33aÞ

ai;i�1 ¼ bi�1;

ai;i�‘ ¼ bi�‘ þ ai�‘þ1ai;i�‘þ1; ‘ ¼ 2; . . . ; i� 1; i ¼ 2; . . . ; s:

�
ð33bÞ



Table 3
Coefficients for low-storage implementation of ORK schemes.

Scheme b1 b2 b3 b4 b5 b6 b7

ORK24-6 0.336220070 0.7459839068 0.6637799293 0.2491852381 – – –
ORK24-5 0.342225961 0.7378998064 0.6577740382 0.2474715291 – – –
ORK24-4 0.355195767 0.7216228417 0.6448042325 0.2436826209 – – –
ORK24-3 0.380005310 0.6945188216 0.6199946897 0.2360791597 – – –
ORK25-6 �0.228408869 �0.3375294821 1.0584111324 0.5095230361 0.1699977380 – –
ORK25-5 �0.297464891 �0.2383372889 1.1238926915 0.5192262702 0.1735721998 – –
ORK25-4 �0.415941679 �0.1484922114 1.2363147896 0.5341909613 0.1796268900 – –
ORK25-3 �0.442753070 �0.1300855068 1.2563368334 0.5437722119 0.1864162368 – –
ORK26-6 2.408763770 �0.0093047802 �1.7331626235 0.6161831156 0.3243988527 0.1061189977 –
ORK26-5 0.985053730 �0.0876721057 �0.3442717951 0.7290794182 0.3592180648 0.1191808143 –
ORK26-4 0.887985566 �0.1187527757 �0.2573008677 0.7644450417 0.3693153010 0.1233269598 –
ORK26-3 0.756825009 �0.2013454676 �0.1453692116 0.8528589966 0.3885442020 0.1308977071 –
ORK37-6 0.404286428 0.3779647692 0.5206055649 �0.2893735752 -0.0806088372 0.7282311294 0.1557168440
ORK37-5 0.401764550 0.3808976268 0.4821328765 �0.4216138297 -0.0484053163 0.8613273616 0.1645078891
ORK37-4 0.383914682 0.3834155266 0.4859355191 �0.4686050694 -0.0395343652 0.9158170068 0.1696841636
ORK37-3 0.301098150 0.4537177923 2.3848117585 �0.0041723786 -1.8255115482 0.4353716400 0.1396016403
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Our objective is to cast the ORK schemes developed in the previous Section in terms of their cm coefficients, in low-storage
(32) form. For this purpose, using Eq. (33), one can rewrite Eq. (13) in terms of the coefficients ai; bi, and obtain a nonlinear
system of s equations in 2s� 1 unknowns. To get a unique solution, in this paper we have set ai ¼ �1; i ¼ 2; . . . ; s, which
yields a set of s equations in s unknowns. Explicit formulas for the coefficients bi as a function of cm can be obtained up
to s ¼ 6 (with the symbolic manipulation software Mathematica). For example, for the case s ¼ 4 one has
Table 4
Coeffici

i

1
2
3
4
5

b1 ¼
c3 � 2c2

3 � 2c4

c3 � 2c4
; b2 ¼

�ðc3 � 2c4Þ
2

2c3ð�c3 þ 2c2
3 þ 2c4Þ

; b3 ¼
2c2

3

c3 � 2c4
; b4 ¼

c4

c3
: ð34Þ
Since for the present ORK schemes c1 ¼ 1; c2 ¼ 1=2, second-order accuracy holds both in the linear and nonlinear case, since
Eqs. (4a) and (4b) are satisfied. When c3 ¼ 1=6 linearly third-order accurate schemes are obtained, and Eq. (4c) is satisfied.
However, it is possible to verify (a posteriori) that for the present implementation Eq. (4d) is also automatically satisfied,
thus providing third-order accuracy also in the nonlinear case. The full set of the low-storage coefficients bi are provided
in Table 3 for all ORK schemes considered so far.

The set of coefficients ci (required in the case of non-autonomous ODE systems) is obtained from Eqs. (3) and (33b). In the
special case ai � �1 one has
c1 ¼ 0; ci ¼ ci�1 þ ½ð�1Þi þ 1� bi�1

2
; i ¼ 2; . . . ; s: ð35Þ
Note that such simple choice may lead to coefficients ci falling outside the natural range [0,1]. In that case, optimized
schemes can still be cast in Williamson’s low-storage form. Indeed, given the under-determination of the system (13),
one can explicitly impose the constraints ci 2 ½0;1�, giving up the requirement ai � �1. For example, the ORK25-6 optimized
scheme can be implemented in low-storage form using the set of coefficients listed in Table 4.

4. Numerical tests

4.1. Linear advection equation

To demonstrate the practical validity of the analysis developed in Section 3 we have performed a series of preliminary
numerical simulations of the 1D linear advection equation with periodic boundary conditions.

First, we have considered the following initial condition (denoted as test A)
u0ðxÞ ¼ sinð10pxÞ; �1 6 x 6 1; ð36Þ
ents for low-storage implementation of ORK25-6 scheme enforcing ci 2 ½0; 1�.

ai bi ci

0.0 0.2 0.0
�1.0 0.83204 0.2
�1.55798 0.6 0.2
�1.0 0.35394 0.8
�0.45031 0.2 0.8
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representing a sinusoidal monochromatic wave with wavelength k ¼ 1=5. Test case A exactly matches the conditions on
which the theory is based, and it is aimed at numerically reproducing the findings of Section 3. A series of simulations have
been performed at different values of the time step (and therefore of the temporal cost �ct). The normalized relative L2 error
norm of the computed solution at time T ¼ 5 has been evaluated according to (see Eqs. (7) and (9))
ẽ

F
p

~e ¼ 1
�waT

P
jjv jðTÞ � uðxj; TÞj2P

jju0ðxjÞj2

" #1=2

; ð37Þ
where v j and uðxjÞ are the numerical end the exact solution at node xj, respectively. In order to single out the time discret-
ization error, very high-order spatial discretization (up to 50th order) has been exploited at this stage, and genuine indepen-
dence of the reported results upon the spatial discretization has been thoroughly checked. The computed temporal cost-
error curves, obtained assuming (as obvious for this case) �w ¼ 10p, are depicted in Fig. 8, where for illustrative purpose
we only report the results for ORK schemes with s ¼ 4 and s ¼ 5. In the figure we also report the corresponding theoretical
curves (already shown in Fig. 4). The figure proves self-consistency of the theoretical analysis. The differences near the dips
of the error curves are due to the fact that a single wavenumber is present in the solution, and the incurred error is the ‘‘local”
error, rather than the ‘‘global” one considered in the theory. The local error theoretical curves (not shown) exactly match the
numerical data.

The second case under consideration is the propagation of a Gaussian pulse (denoted as B)
u0ðxÞ ¼
1
2

e�ðx=3Þ2 ; �50 6 x 6 50; ð38Þ
which has been frequently used [8,10–12] to evaluate the performance of numerical schemes for solutions with non-trivial
content in Fourier space. To demonstrate the practical usefulness of ORK schemes in the case of finite spatial accuracy, sim-
ulations for test case B have been performed coupling time integration with the C23 spatial discretization, and working un-
der conditions of nominal performance. Specifically, for a given cost level �c1, the optimal Courant number �r� and reduced
wavenumber �u� to perform the simulation have been selected from the diagrams reported in Fig. 7. A relevant length scale
for test case B is the pulse diameter k ¼ 6, and accordingly we have set �w ¼ p=3 to evaluate the normalized numerical error
from Eq. (37). The computed cost-error relations thus obtained are reported in Fig. 9 for all ORK schemes. The shape of the
maps is very similar to the theoretical curves of Fig. 7, and the optimal working points are located at the same positions in
terms of cost; however, the error levels are all displaced to lower values. This is due to the fact that the actual numerical error
is a weighted superposition of the error associated with the various harmonics that constitute the solution, while the the-
oretical error metric is based on a ‘‘worst case” assumption, i.e. the maximum error over the entire wavenumber range (see
Eq. (16)). This observation confirms that, even though the theory is based on the analysis of monochromatic waves, it also
yields significant insight into the behavior of more general types of solutions, and as such, it can be used as a guidance in the
selection of RK schemes tailored for specific applications.

4.2. Linearized Euler equations

As a further step, we have considered the two-dimensional linearized Euler equations (LEE), which can be written in con-
servation form as
100101102103
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Fig. 9. Computed cost-error relation for test case B (C23 spatial discretization).
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@q
@t
þ @f
@x
þ @g
@y
¼ 0; ð39Þ
where q ¼ ½u;v ; p�T; f ¼ ½p;0;u�T; g ¼ ½0; p;v �T. The problem that we have considered (referred to as test case C in the follow-
ing) is the reflection of a pressure pulse initially located at ðx0 ¼ 0; y0 ¼ 16Þ from a solid wall (located at y ¼ 0). The initial
conditions for the problem are
u ¼ 0; v ¼ 0; p ¼ e�ar2
; ð40Þ
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with r ¼ ½ðx� x0Þ2 þ ðy� y0Þ
2�1=2 and a ¼ log 2=r2

0; r0 ¼ 4. The problem has the following exact solution at time T [17]
q ¼
uðx; y; TÞ ¼ x

2ag I1 þ x
2af I2;

vðx; y; TÞ ¼ y�y0
2ag I1 þ yþy0

2af I2;

pðx; y; TÞ ¼ 1
2a I3;

8>><
>>: ð41Þ
where g ¼ ½x2 þ ðy� y0Þ
2�1=2

; f ¼ ½x2 þ ðyþ y0Þ
2�1=2, and
I1 ¼
Z 1

0
e�

n2
4a sinðnTÞJ1ðngÞndn;

I2 ¼
Z 1

0
e�

n2
4a sinðnTÞJ1ðnfÞndn;

I3 ¼
Z 1

0
e�

n2
4a cosðnTÞ½J0ðngÞ þ J0ðnfÞ�ndn;

ð42Þ
J0 and J1 being the zeroth- and first-order Bessel functions of the first kind, respectively. At the selected final time for the
analysis (T ¼ 40), the pulse has started to reflect from the bottom wall (as shown in Fig. 10). Gaussian quadratures have been
exploited to evaluate the exact solution up to machine precision. Numerical simulations have been carried out in a rectan-
gular computational domain ½�50;50� � ½0;100� discretized with square cells with size h. Nonreflecting boundary conditions
are enforced at the left, right and top boundaries, and reflectional symmetry is exploited for the treatment of the bottom
wall. The normalized L2 error norm has been computed as
~e ¼ 1
�waT

P
i;jjqij � qðxi; yjÞj

2P
i;jjq0ðxi; yjÞj

2

" #1=2

; ð43Þ
where qij is the numerical solution at the grid node ðxi; yjÞ. The relevant wavenumber (associated with the initial pulse ra-
dius) is �w ¼ p=r0, and the characteristic propagation speed is a ¼ 1.

Two different target cost values (�c�2 ¼ 100, and �c�2 ¼ 25) have been considered. As explained in the previous section, the
best way to exploit the assigned computational resources is to preliminarily determine the optimal grid spacing and time
step. The computed theoretical maps of optimal error, optimal Courant number and reduced wavenumber, reported in
Fig 11, somewhat differ from the corresponding curves in Fig 7, because the cost metric is now evaluated in two space
dimensions (d ¼ 2Þ. For example, considering the target cost �c�2 ¼ 100 for the ORK37-4 scheme, one has
�u� ¼ 1:349; �r� ¼ 0:485, which implies h� ¼ �u�= �w ¼ 1:718; k� ¼ �r�h�=a ¼ 0:833.

The computed error norms for the two selected target cost values are reported in Table 5a and b for a limited number of
RK schemes coupled with C23 spatial discretization, together with the optimal �u; �r, and the nominal error. To highlight dif-
ferences in the computed solutions, in Fig. 12 we also report the distribution of the local error on pressure at the bottom wall
for a few representative schemes.
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Fig. 10. Exact solution of test case C at time T ¼ 40: 11 pressure contours from �0.1 to 0.1. Dashed lines indicate negative values.



Table 5
Test case C: optimal reduced wavenumber ð�u�Þ, Courant number ð�r�Þ, mesh spacing ðh�Þ, time step ðk�Þ, nominal error ðe�Þ and computed error ð~eÞ for given
cost.

ID �u� �r� h� k� e� ~e

�c�2 ¼ 100
RK4 1.435 0.230 1.827 0.420 9.856E�05 1.510E�05
ORK37-3 1.469 0.375 1.870 0.701 1.283E�04 1.705E�05
ORK37-4 1.349 0.485 1.718 0.833 5.013E�06 6.903E�06
ORK37-5 1.156 0.770 1.472 1.133 9.933E�06 2.188E�06
ORK37-6 1.099 0.897 1.399 1.255 5.616E�06 7.452E�07
RK25-B 1.527 0.239 1.944 0.465 1.963E�04 2.872E�05
RK25-H 1.462 0.272 1.861 0.506 1.223E�04 1.682E�05
RK35-C 1.385 0.320 1.763 0.564 6.716E�05 9.792E�06
RK26-B 1.482 0.313 1.887 0.591 1.421E�04 2.202E�05c
ID �u� �r� h� k� e� ~e

�c�2 ¼ 25
RK4 1.912 0.389 2.434 0.947 2.536E�03 3.118E�04
ORK37-3 1.760 0.873 2.241 1.956 9.753E�04 1.803E�04
ORK37-4 1.644 1.071 2.093 2.242 4.500E�04 5.545E�05
ORK37-5 – – – –
ORK37-6 – – – –
RK25-B 1.740 0.625 2.215 1.384 1.023E�03 2.166E�04
RK25-H – – – –
RK35-C 1.763 0.621 2.245 1.394 9.850E�04 1.476E�04
RK26-B 1.680 0.861 2.139 1.842 5.706E�04 1.262E�04
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Fig. 11. Theoretical ‘‘optimal” error (a), Courant number (b), and reduced wavenumber (c) as a function of cost for ORK time integration schemes coupled
with C23 discretization in two space dimensions.
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Considering the cost level �c�2 ¼ 100, from Table 5 and Fig. 12(a), the minimum nominal error is achieved using the ORK37-
6 scheme. This expectation is confirmed by inspection of the normalized computed error. Specifically, the ORK37-6 scheme
allows a reduction of at least a factor of twenty with respect to the optimized schemes proposed by other authors. This con-
clusion was to be expected on the basis of the discussion reported in Section 3, since those schemes are not suitable to oper-
ate at (relatively) high cost levels. We also observe that non-optimized, seventh-order RK scheme (RK7) cannot operate at
the selected cost level, due to the limitation given by Eq. (31).

Carrying out the same analysis at lower cost level ð�c�2 ¼ 25Þ leads to the results reported in Table 5b and Fig. 12(b). In this
case the theory predicts best performance of the ORK37-4 scheme. This is again confirmed by the results of numerical sim-
ulations, even though in this case the gain with respect to existing optimized schemes is limited to a factor two. Again, this
was to be expected, since the working point is close to the best performance of many existing RK schemes.

These considerations could be equally well carried out in terms of obtaining minimal cost for a given error level. In that
case, one could enter Fig. 11 with a specified target error level to determine the optimal working conditions of a given
scheme, and select the best candidate among available schemes to get the least possible cost.

5. Conclusions

We have presented a systematic procedure to determine the optimal performance of RK schemes (coupled with compact
discretization of the spatial derivatives) for CAA applications, based on quantitative cost/error analysis. The analysis shows
that, given a physical problem of wave propagation (characterized in terms of the maximum relevant wavenumber and max-
imum propagation speed), and given a spatial/temporal discretization, an optimum set of the mesh spacing and time step
exists which minimizes the computational effort for given error (or vice-versa).

Optimization of RK schemes amounts to get the least temporal cost (i.e. largest possible time step) for given error. A fam-
ily of schemes with different number of stages (up to seven) have been developed for different target error levels. The opti-
mized RK schemes here derived have been cast in 2N low-storage form, to allow for efficient implementation of large-scale
wave propagation problems. The analysis shows that some of the RK schemes developed in the literature very nearly belong
to the family of optimized schemes here discussed, even though they were devised following different strategies.

The actual advantages offered by optimized RK schemes are demonstrated by performing numerical solutions of the 1D
linear advection equation and of the 2D linearized Euler equations. An improvement of efficiency of a factor of 2	 20 with
respect to existing RK schemes can be obtained, depending upon the allowed error for numerical solution.

The main limitation of the present analysis is that it does not strictly apply to problems where the selection of the grid
spacing is dictated by physical constraints (i.e. related to the Kolmogorov lengthscale for fluid turbulence), and to compu-
tational grids with severe stretching. The ideal field of application of the theory is in large-scale, LEE computations. LEE
are largely used in aeroacoustics to predict the far-field sound assuming the near-field solution (typically computed by
means of full Navier–Stokes solvers) as a source term [18]. Computational grids for LEE are typically very simple, and have
uniform or smoothly varying spacing, thus making the theory presented in the paper applicable with very good accuracy.

Our main message is that there is no ‘‘best” time integration scheme in absolute sense. The choice of the most suitable
algorithm critically depends upon the working conditions, and has to be carried out by clever selection among several pos-
sible ones. The present paper is intended to provide some guidance to perform such choice.
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